Extensions 1→N→G→Q→1 with N=C22 and Q=S3xD7

Direct product G=NxQ with N=C22 and Q=S3xD7
dρLabelID
C22xS3xD784C2^2xS3xD7336,219

Semidirect products G=N:Q with N=C22 and Q=S3xD7
extensionφ:Q→Aut NdρLabelID
C22:(S3xD7) = D7xS4φ: S3xD7/D7S3 ⊆ Aut C22286+C2^2:(S3xD7)336,212
C22:2(S3xD7) = S3xC7:D4φ: S3xD7/S3xC7C2 ⊆ Aut C22844C2^2:2(S3xD7)336,162
C22:3(S3xD7) = D7xC3:D4φ: S3xD7/C3xD7C2 ⊆ Aut C22844C2^2:3(S3xD7)336,161
C22:4(S3xD7) = D6:D14φ: S3xD7/D21C2 ⊆ Aut C22844+C2^2:4(S3xD7)336,163

Non-split extensions G=N.Q with N=C22 and Q=S3xD7
extensionφ:Q→Aut NdρLabelID
C22.1(S3xD7) = Dic7.D6φ: S3xD7/S3xC7C2 ⊆ Aut C221684C2^2.1(S3xD7)336,152
C22.2(S3xD7) = Dic3.D14φ: S3xD7/C3xD7C2 ⊆ Aut C221684C2^2.2(S3xD7)336,155
C22.3(S3xD7) = C42.C23φ: S3xD7/D21C2 ⊆ Aut C221684-C2^2.3(S3xD7)336,153
C22.4(S3xD7) = Dic3xDic7central extension (φ=1)336C2^2.4(S3xD7)336,41
C22.5(S3xD7) = D14:Dic3central extension (φ=1)168C2^2.5(S3xD7)336,42
C22.6(S3xD7) = D6:Dic7central extension (φ=1)168C2^2.6(S3xD7)336,43
C22.7(S3xD7) = D42:C4central extension (φ=1)168C2^2.7(S3xD7)336,44
C22.8(S3xD7) = C42.Q8central extension (φ=1)336C2^2.8(S3xD7)336,45
C22.9(S3xD7) = Dic21:C4central extension (φ=1)336C2^2.9(S3xD7)336,46
C22.10(S3xD7) = C14.Dic6central extension (φ=1)336C2^2.10(S3xD7)336,47
C22.11(S3xD7) = C2xDic3xD7central extension (φ=1)168C2^2.11(S3xD7)336,151
C22.12(S3xD7) = C2xS3xDic7central extension (φ=1)168C2^2.12(S3xD7)336,154
C22.13(S3xD7) = C2xD21:C4central extension (φ=1)168C2^2.13(S3xD7)336,156
C22.14(S3xD7) = C2xC21:D4central extension (φ=1)168C2^2.14(S3xD7)336,157
C22.15(S3xD7) = C2xC3:D28central extension (φ=1)168C2^2.15(S3xD7)336,158
C22.16(S3xD7) = C2xC7:D12central extension (φ=1)168C2^2.16(S3xD7)336,159
C22.17(S3xD7) = C2xC21:Q8central extension (φ=1)336C2^2.17(S3xD7)336,160

׿
x
:
Z
F
o
wr
Q
<